
Data Warehouse Performance
Enhancements with Oracle9i

An Oracle White Paper
April 2001

Data Warehouse Performance Enhancements with Oracle9i Page 2

Data Warehouse Performance Enhancements with Oracle9i

INTRODUCTION...4
RESOURCE REQUIREMENTS AND DEPENDENCIES..4

Hardware ...4
Database ..4

BASIC PERFORMANCE ENHANCEMENTS..5
Merge / Upsert...5

Merge / Upsert Enhancements ..5
Merge / Upsert Results..5

External Tables ...6
External Tables Enhancement ..6
External Tables Results...7

Group By...8
Variable Length Aggregates..8
Aggregation Test Results ..8

Dynamic Memory Management..9
PGA Memory for dedicated servers..9
Dynamic Memory Management Results...9

Materialized Views, Fast Refresh ...10
Optimized Execution Plan for Fast Refresh..10
Fast Refresh Results ..10

PL/SQL..10
PL/SQL Enhancements ...10
PL/SQL Results...11

Index Skip Scan...11
Index Skip Scan Enhancements ..11
Index Skip Scan Results..12

Bitmap Join Index ...14
Bitmap Join Index Enhancements...14
Bitmap Join Index Results ..14

CONCLUSION...16
APPENDIX...18

Initialization Files..18
init8iopt.ora ...18
init9iopt.ora ...19

Creation Statements ..20

Data Warehouse Performance Enhancements with Oracle9i Page 3

merge / upsert ..20
external tables ...22
group by...24
materialized views...25
fast refresh...30
pl/sql ..33
index skip scan ..34
bitmap join index ..35

Data Warehouse Performance Enhancements with Oracle9i Page 4

Data Warehouse Performance Enhancements with Oracle9i

INTRODUCTION

Oracle9i provides significant performance improvements for basic data warehouse (DWH)
functionality. Since no schema or application code has to be changed to leverage most of these
improvements, nearly all customers will benefit from them simply by upgrading their Oracle
installation. This paper illustrates the Oracle9i enhancements by performing typical data
warehousing tasks on a test data warehouse and comparing Oracle8i and Oracle9i results. All the
tasks were performed on a single carefully controlled system, ensuring a fair comparison between
Oracle8i and Oracle9i. From loading data, changing it through a transformation process, creating
materialized views, refreshing them and finally accessing the data, we find that Oracle9i significantly
improves performance and system utilization.

RESOURCE REQUIREMENTS AND DEPENDENCIES

The tests comparing Oracle8i to Oracle9i were done on the same hardware system, using the same
amount of memory, I/O subsystem and number of CPUs. Each test was monitored to prove that the
results are correct and were not skewed by other workloads running at the same time. All timing
information is presented in the format mi:ss.

Hardware

System Configuration: Sun Microsystems sun4u 8-slot Sun Enterprise 4000/5000

• 12 x 400 MHZ CPUs

• 10 GB Memory

• 128 x Disks, Raw Devices, 64KB Stripe Unit Size with a maximum of 90 MB/sec. throughput

Database

Two 30 GB databases based on a TPC-H schema were set up with equivalent initialization
parameters (init.ora), except those parameters that were necessary to enable the new features.

• Oracle9i (9iopt), Total System Global Area 662,995,316 Bytes

• Oracle8i (8iopt), Total System Global Area 616,460,448 Bytes

Data Warehouse Performance Enhancements with Oracle9i Page 5

BASIC PERFORMANCE ENHANCEMENTS

This paper shows that performance improvements with Oracle9i are not exclusively related to new
features that need to be explicitly activated. Many of the improvements will be experienced without
any change to application code or database schema. For that reason many statements running in
existing Oracle8i DWH environments will automatically benefit after the migration to Oracle9i. We
will go through a data warehouse process, starting with the loading, transformation and building
phase, then aggregate data in Materialized Views, refresh these views and access data with typical
query statements. At the end we will examine how long the complete process takes in Oracle8i and
Oracle9i, presenting the performance improvement for each of the enhancements.

Merge / Upsert

Merge / Upsert Enhancements

In a data warehouse environment, tables (typically fact tables) need to be refreshed periodically with
new data arriving from on-line systems. This new data may contain changes to existing rows in tables
of the warehouse and/or new rows that need to be inserted. If a row in the new data corresponds to
an item that already exists in the table, an UPDATE is performed; if the row’s primary key does not
exist in the table, an INSERT is performed. Prior to Oracle9i these operations were expressed either
as a sequence of DMLs (INSERT/UPDATE) or as PL/SQL loops deciding, for each row, whether to
insert or update the data. But both approaches often suffer from deficiencies in performance and
usability. By extending SQL with a new syntax - the MERGE-statement - which combines the
sequence of a conditional INSERT and UPDATE in one single atomic statement, Oracle9i overcomes
these deficiencies and makes the implementation of warehousing applications more simple and
intuitive.

 The ‘IF ROW EXISTS -THEN-UPDATE ELSE-INSERT’ - conditional sequence is also referred to
as UPSERT.

 Merge / Upsert Results

 The performance improvements which can be achieved by using the new atomic MERGE-statement
for the upsert process in Oracle9i, instead of using a sequence of conditional INSERT and UPDATE-
statements with the same semantics, depend mainly on the size of the source data containing the new
rows to be merged, compared to the size of the destination table in which the new arrivals will be
merged. Changing many rows of the destination table will benefit more from the upsert than changing
just a few rows. If the upsert is performed in one MERGE-statement, the source table has only to be
scanned once. Whereas using a sequence of INSERT/UPDATE the source table has to be scanned
twice.

If further constraints like additional procedural checks or transformations, which can not be
expressed in standard SQL, are necessary, performing a merge in PL/SQL is from a performance
perspective by far the least attractive choice. The PL/SQL-method is significantly slower than
MERGE or UPSERT/INSERT which both use set-oriented processing logic.

Data Warehouse Performance Enhancements with Oracle9i Page 6

If the ETL (Extraction/Transformation/Loading) process requires a procedural transformation before
the upsert, using the new parallelizable PL/SQL table functions in stream mode and pipelining the
results to a subsequent Merge operation may result in significant performance gains.

In our tests we compared an upsert of 3 million new customer records into a customer table
containing 4.5 million rows. The new MERGE-statement running in Oracle9i was compared to a
sequence of conditional UPDATE and INSERT-statements running in Oracle8i. In both cases 1.5
million records were inserted and 1.5 million records were updated. In both scenarios Oracle’s
parallel DML capability was used to execute the statement with a parallel degree of 16. Apart from
the performance gain due to minimized scanning of the source table, internally optimized index
maintenance operations for rows inserted with parallel DML also contribute to the performance
improvement. The same internal optimization also leads to performance improvements with ‘normal’
parallelized INSERTs in Oracle9i compared to the same INSERT-statement in Oracle8i.

Test Oracle8i Oracle9i Performance
Diff. %Gain

Upsert update/insert 03:28 merge 02:24 01:04 30.7%

Figure 1: Upsert test results

External Tables

External Tables Enhancement

In Oracle9i the new External Table feature enables the use of external data as a ‘virtual table’. With
this interface, external data can be queried in parallel and joined directly to internal, regular tables
without requiring the external data to be loaded into the database beforehand.

Using External Tables enables pipelining of ETL-processes, so that the transformation phase will not
be blocked by the loading phase. The transformation process can be merged with the loading process
without any interruption of the data streaming. It is no longer necessary to store the data in a staging
area for comparison or transformation purposes.

The main difference between External Tables and regular tables is, that externally organized tables
are read-only. No DML operations are possible and no indexes can be created on them. In Oracle9i
External Tables are a complement to the existing SQL*Loader functionality. They are especially
useful for environments where the complete external source has to be joined with existing database
objects and transformed in a complex manner or where the external data volume is large and used
only once.

SQL*Loader, on the other hand, might still be the better choice for loading data where additional
indexing of the staging table is necessary. This is true for operations where the data is used in
independent complex transformations or the data is only partially used in further processing.

Data Warehouse Performance Enhancements with Oracle9i Page 7

External Tables Results

The test done for External Tables was complementary to the upsert test.
In Oracle8i 3 steps need to be performed to upload new records to a warehouse schema:

1. Load the data from external files into a database staging table (CUSTOMER_MERGE in our
case)

2. Create a unique index on the staging table (required for update)
3. Merge the data to the destination table (CUSTOMER) using UPDATE/INSERT

In Oracle9i the whole process can be reduced to 2 steps:

1. Create External Table metadata in the database (CREATE TABLE … ORGANIZATION
external)

2. Use the External Table (CUSTOMER_MERGE) directly as source for the Oracle9i MERGE-
statement.

The Oracle9i Step 1 above is easy, since SQL*Loader generates the complete CREATE TABLE-
syntax on demand based on an existing Oracle8i loader control file. Using the Oracle9i approach,
two maintenance tasks that were necessary in Oracle8i can be omitted: data load and index creation.
Unlike the UPDATE-statement, the MERGE-statement requires no unique index on the source table.

In our scenario the time for Oracle8i loading and indexing steps was:

1. Loading (3 million rows, 16-fold direct parallel) 19 seconds
2. Indexing stage table (16-fold parallel) 14 seconds

Thus 33 seconds are saved by using Oracle9i External Tables. The test also proved that using the
External Table as a direct source instead of an internal table for the MERGE resulted only in a very
modest performance degradation: the MERGE finished in 2:27 compared to 2:24 using the internal
table.

Test Oracle8i Style Oracle9i Style Performance
Diff. %Gain

External load+index+
upsert (*)

02:57 upsert
external

02:27 00:30 16.9 %

Figure 2: External Tables test results (*): results taken
from Oracle9i-MERGE for fair comparison

Data Warehouse Performance Enhancements with Oracle9i Page 8

Group By

Variable Length Aggregates

GROUP BY is a very important basic operation for DWH applications. In Oracle9i the GROUP BY
has been enhanced to use Variable Length Aggregates.

In Oracle8i, the execution engine uses Oracle numbers as aggregation accumulators during GROUP
BY, Cube and Rollup processing. The sort engine is populated with records constructed by
concatenation of GROUP BY keys and a list of aggregate work areas. The aggregation happens as the
sort operation consumes rows with the same GROUP BY keys. Oracle8i aggregates use 23 bytes for
SUM, 31 bytes for AVG and 54 bytes for VARIANCE to accumulate the values being aggregated.
The sort records can grow in size, which, in turn leads to a quick exhaustion of the in-memory sort
area.

For the majority of applications the use of full length Oracle numbers for aggregations is clearly a
waste of space. If we know that a specific Oracle number may only require 7 bytes instead of 22 bytes
and reduce the aggregate work area(s), a 3-fold space gain can be achieved. This may directly
translate to performance gains. By utilizing space so much more efficiently, the sort engine may never
spill to disk, but even if it does, it would read and write 3 times less data in this example.

Aggregation Test Results

As the number of groups processed in a GROUP BY query increases, so does the advantage of
Oracle9i over Oracle8i. For a very small number of groups in a query, the difference between the two
releases is not noteworthy. We chose a query with 8 aggregate operators (GroupBy.sql) for our test
and fixed the amount of memory to be used by setting SORT_AREA_SIZE to 20MB and 30MB. With
20MB, both Oracle8i and Oracle9i spilled to disk. In this case, Oracle9i used almost half the disk
space that Oracle8i did, and was 10% faster. With 30MB, Oracle9i fit in memory, whereas Oracle8i
still spilled to disk, and in this case, Oracle9i was 20% faster. The degree of parallelism we used in
both cases was 24, which means that each of the 24 processes used 20MB of memory in the first case,
and 30MB of memory in the second scenario.

Test Oracle8i Oracle9i Performance
DOP Sort Temp Time Temp Time Diff. %Gain

1 24 20M 1.35G 02:46 0.75G 02:29 00:17 10.2%
2 24 30M 1.12G 02:29 - 01:56 00:30 20.1%

Figure 3: GROUP BY test results. DOP = Degree of Parallelism,
Sort = SORT_AREA_SIZE

Data Warehouse Performance Enhancements with Oracle9i Page 9

Dynamic Memory Management

PGA Memory for dedicated servers

Prior to Oracle9i, memory work areas like SORT_AREA_SIZE, HASH_AREA_SIZE,
BITMAP_MERGE_AREA_SIZE and CREATE_BITMAP_AREA_SIZE had to be set manually.
Depending on the kind of application running on the system and the workload, a fixed setting for
these parameters could have caused problems. When the setting was too low, Oracle could not
perform time consuming operations in memory and had to write to disk. When the setting was too
high and too many processes consumed too much memory, the operation system could potentially end
up in swapping memory to disk. In both cases the user would have to face a performance
degradation. Since applications on a database can have very different profiles in terms of memory
consumption, the task of setting these parameters correctly turned out to be quite difficult.

Oracle9i introduces Dynamic Memory Management. To enable this mode, the DBA simply needs to
specify the total size of PGA memory for the Oracle instance (Dedicated Server only). This is done by
setting the new initialization parameter PGA_AGGREGATE_TARGET. The specified number (e.g.
2G) is a global target for the Oracle instance. Oracle controls memory consumption across all
database server processes and guarantees that the target will not be exceeded. Within this target,
when the workload is low, the work processes can get the optimal amount of PGA memory.

Dynamic Memory Management Results

We created different statements based on joins (HASH_AREA_SIZE) and GROUP BY aggregations
(SORT_AREA_SIZE). The first statement Dyn_01.sql is very similar to the test cases done for
GROUP BY (see GroupBy.sql) except that it reads more partitions from Lineitem. The other
statements are based on Single or Joined Aggregated Materialized Views (Mav10.sql, Mav12.sql,
Mav30.sql). During the tests, we observed that the new feature Variable Length Aggregates cross
benefits from Dynamic Memory Management by processing many sort operations completely in
memory. With both features enabled we could see many more cases where Oracle8i had to write sort
information to disk and Oracle9i did not. Mav10.sql is an Aggregated Materialized Join View, joining
Lineitem and Parts (hash join) and having a lot of AVG, SUM and VARIANCE aggregations with
predicates on Parts and Lineitem, resulting in 2.4M rows. Mav12.sql is also an Aggregated
Materialized Join View on Lineitem and Parts with no predicates, resulting in 2.5M rows. Mav30.sql
is a Single Table Aggregated Materialized View on Orders containing 3M rows.

Test Oracle8i Oracle9i Performance
DOP Sort Temp Time Temp Time Diff. %Gain

Dyn_01 12 20M 1.74G 03:26 - 02:47 00:39 18.9%
Mav10 12 20M 1.71G 02:13 - 01:38 00:35 26.3%
Mav12 12 20M 12.41G 35:02 5.01G 23:04 10:58 31.2%
Mav30 12 10M 7.21G 05:53 - 03:50 02:03 34.8%

Figure 4: Dynamic Memory Management test results. DOP = Degree of Parallelism, Sort =
SORT_AREA_SIZE (only for Oracle8i)

Data Warehouse Performance Enhancements with Oracle9i Page 10

Materialized Views, Fast Refresh

Optimized Execution Plan for Fast Refresh

Fast Refresh for all different types of Materialized Views has been improved in Oracle9i.
Materialized Join Views and Aggregated Materialized Join Views benefit most from this
improvement. An optimal execution plan has a big impact on the execution time for a Fast Refresh.
Prior to Oracle9i the refresh routines contained hard coded hints. Depending on the amount of data
that had to be refreshed, the execution plan may not be optimal in some cases. The problem is that
statistics on most of the objects accessed by a Fast Refresh, like all_sumdelta, Materialized Views or
snapshots, are missing. Before executing the Fast Refresh, cardinality statistics are computed on the
fly and used by the optimizer, so that Oracle9i can intelligently optimize the operation for best
performance.

Fast Refresh Results

Many optimizations and improvements have been implemented in Oracle9i. It is now possible to
perform a Fast Refresh for all types of operations on all types of Materialized Views. In Oracle8i
some restrictions exist, e.g. only ‘insert append’ or ‘direct loads’ will work for Fast Refresh on
Aggregated Materialized Join Views. For fair comparison, MAV12 is used only for a small insert, the
second result (insert of 179,000 rows) is taken from a refresh of Aggregated Single Table
Materialized View (MAV40).

Test Oracle8i Oracle9i Performance 9i
Time Time Diff. %Gain

 3Rows(Mav12) 01:20 00:20 00:60 75.0%
179,000 Rows (Mav40) 00:57 00:22 00:35 61.4%

Figure 5: Results of Fast Refresh

PL/SQL

PL/SQL Enhancements

Oracle9i has important PL/SQL performance enhancements. In addition to PL/SQL performance
enhancements which require changes to existing application code - like table functions, extended
bulk operations, etc. - there are also some significant performance improvements which are
transparent to existing applications. The most important are:

• optimized execution of user-defined functions in SQL-statements

• native compilation of PL/SQL

Data Warehouse Performance Enhancements with Oracle9i Page 11

Optimized execution of user-defined functions in SQL-statements:

When a user-defined PL/SQL-function is embedded in a SQL-statement, a context switch between
the SQL-statement executor and the PL/SQL-engine happens for each matching row of the query. If
there are many matching rows, the invocation time for the function becomes a significant portion of
the overall execution time. In Oracle9i this invocation mechanism has been thoroughly optimized
resulting in a significant reduced number of instructions.

Native compilation of PL/SQL:

In Oracle8i, PL/SQL program units are compiled to byte code at compile time. The byte code has to
be interpreted by the PL/SQL-engine during execution. This mechanism is still available in Oracle9i.
But now PL/SQL program units can also be compiled natively. Native compilation was first
introduced to stored Java program units in Oracle8i and has been applied to PL/SQL in Oracle9i.
After a PL/SQL library unit has been natively compiled, it is stored as a shared library in the file
system. At execution time, the shared library is dynamically linked to the executing Oracle process.
Native compilation will in particular benefit PL/SQL programs that handle complex programming
logic (complex loops, complex computations, etc.). In this situation, a performance improvement of
factor 2 - 5 is realistic.

PL/SQL Results

Our case study shows the Oracle9i performance improvement for PL/SQL functions embedded into
SQL. A simple function (function.sql) which computes the discounted order price given the extended
price and discount rate stored in the retrieved rows, was applied in the SELECT-list of the statement
for 200,000 and 400,000 records.

The invocation time for the PL/SQL-function made up a significant part of the overall execution time,
because the function was simple, consisting of only one instruction. The test showed 41% overall
performance improvement for this statement. The default byte code compilation was used. Native
compilation would have improved the overall performance only slightly in this test case due to the
simplicity of the function.

Test Oracle8i Oracle9i Performance 9i
Time Time Diff. %Gain

200,000 Rows 00:40 00:24 00:16 40.0%
400,000 Rows 01:21 00:48 00:33 40.7%

Figure 6: PL/SQL test results

Index Skip Scan

Index Skip Scan Enhancements

In releases prior to Oracle9i, a composite index would only be used if either the leading index prefix
column was included in the predicate of the statement or an index full scan was executed. With

Data Warehouse Performance Enhancements with Oracle9i Page 12

Oracle9i, the optimizer can use a composite index even if the prefix column value is not being used in
the query. The optimizer uses an algorithm called ‘Index Skip Scan’ to retrieve ROWIDs for values
that do not use the prefix column. Skip scans reduce the need to add an index to support occasional
queries which do not reference the prefix column of an existing index. This is useful when a lot of
change activity takes place since the existence of too many indexes degrade the performance of
DML-operations. The algorithm is also advantageous in cases where no clear strategy can be found
for selecting the columns to use as the prefix columns in a composite index.

The prefix column should be the most discriminating, but also the most frequently referenced in
queries. Sometimes, these two requirements are met by two different columns in a composite index,
forcing a compromise or the use of multiple indexes.

During a skip scan, the B*-tree is being probed for each distinct value in the prefix column. For each
prefix column value, the normal search algorithm is performed. The result is a series of searches
through subsets of the index, each of which appear to result from a query using a specific value of the
prefix column.

Index Skip Scan Results

A concatenated index, I_ORDERS_SKIP on ORDERS table, consisting of columns
O_ORDERPRIORITY, O_ORDERSTATUS, O_TOTALPRICE was created (index_skip.sql). The
cardinality of the table ORDERS is 45,000,000. The number of distinct values of each indexed
column is:

O_ORDERPRIORITY : 5
O_ORDERSTATUS : 3
O_ORDERTOTAL_PRICE : 31078592

The following query was tested against the table:

SELECT o_orderpriority,
 o_orderstatus,
 SUM(o_totalprice)
FROM orders
WHERE o_orderstatus = ’F’ AND

o_totalprice BETWEEN 0 AND 2000
GROUP BY o_orderpriority, o_orderstatus

The query filtered 64,771 rows (0.14%). The results below show the immense value of the new
access path.

Test Oracle8i Oracle9i Performance 9i
diff. %Gain

64,000 R. serial index full scan 04:22 skip scan 00:02 04:20 99.2%
64,000 R. parallel index full scan 00:23 skip scan 00:02 00:21 91.3%
64,000 R. parallel full table scan 01:04 skip scan 00:02 01:02 96.8%

Figure 7: Index Skip Scan test results

Data Warehouse Performance Enhancements with Oracle9i Page 13

Data Warehouse Performance Enhancements with Oracle9i Page 14

Bitmap Join Index

Bitmap Join Index Enhancements

Oracle has supported persistent bitmap indexes as well as B*-tree indexes since Oracle 7.3. In all
releases since then, bitmap indexes have been enhanced significantly. The major enhancement for
Oracle9i is the ability to build a bitmap index on a table based on columns of another table. This
index type is called a Bitmap Join Index. A Bitmap Join Index can be a single- or multi-column index
and can combine columns of different tables. Bitmap Join Indexes materialize precomputed join
results in a very efficient way. Typical usage in a data warehouse would be to create Bitmap Join
Indexes on a fact table in a star or snow flake schema on one or more columns of one or more
dimension tables. This could improve star query processing times dramatically, especially when a star
query has filter predicates on low cardinality attributes of different dimension tables and the
combination of these attributes is highly selective on the fact table.

Compared to Materialized Join Views in Oracle8i, Bitmap Join Indexes are much more space
efficient because they store the ROWIDs in a compressed form. Another possible advantage is the
fact that Bitmap Join Indexes can be combined with other bitmap indexes on the same table to
process a complex query and they are maintained automatically like any other index (but unlike
Materialized Views, which require a refresh). Therefore, in many cases, the use of Bitmap Join
Indexes might be the better choice in Oracle9 i.

Bitmap Join Index Results

In our test case, we created a combined Bitmap Join Index on table PARTSUPP based on the
dimension table columns PARTS (P_TYPE) and SUPPLIER(S_NATIONKEY). The table
cardinalities were :

SUPPLIER : 6,000,000 rows
PARTS : 300,000 rows
PARTSUPP : 24,000,000 rows

The column cardinalities were:

PARTS(P_TYPE) : 150 distinct values
SUPPLIER(S_NATIONKEY) : 25 distinct values

Query issued:

SELECT COUNT (DISTINCT ps_suppkey),

 AVG (ps_supplycost),

 MAX (ps_supplycost),

 MIN (ps_supplycost)

FROM partsupp ps, supplier s, parts p

WHERE ps.ps_suppkey = s.s_suppkey AND

 ps.ps_partkey=p.p_partkey AND

 s.s_nationkey = 24 AND

 p.p_type=’medium burnished steel’;

Data Warehouse Performance Enhancements with Oracle9i Page 15

The query returned 6475 rows on PARTSUPP. It was run with a parallel degree of 16. Oracle9i used
a Bitmap Join Index access path. The access path giving the best results in Oracle8i was a hash join
of all three tables, chosen by the optimizer by default. Note that the 00:07 seconds achieved in
Oracle9i was the result when reading all blocks from disk; with all blocks cached, the query finished
in 00:02 seconds.

Test Oracle8i Oracle9i Performance
Diff. %Gain

Bitmap Join Index 01:02 00:07 00:55 88.7%

Figure 8: Bitmap Join Index test results

Data Warehouse Performance Enhancements with Oracle9i Page 16

CONCLUSION

The results of the Oracle9i versus Oracle8i comparison presented in this paper show that Oracle9i
improves the performance for all test cases. The tasks tested are very common and are normally
executed when loading, transforming, aggregating, refreshing and selecting data in a data warehouse.
A customer will benefit from basic performance enhancements like Variable Length Aggregates,
Dynamic Memory Management, Fast Refresh and PL/SQL performance enhancements without
changing the schema or the application code. Applying features like Index Skip Scan, External
Tables, Merge and Bitmap Join Indexes will improve the performance even more.

Using Oracle8i with our test data set and hardware, a data loading, aggregating and refreshing cycle
would require 55 minutes and 14 seconds. Here are the activities performed:

- External Table/direct Upsert 04:01
- Variable Length Aggregates 05:15 (sum of times for 2 test cases)
- Create Materialized View (mav12) 35:02
- Create Materialized View (mav30) 05:53
- Fast Refresh 02:17 (sum of times for 2 test cases)
- PL/SQL 01:21 (second test case)
- Index Skip Scan 00:23 (parallel index full scan)
- Join (without bitmap join index) 01:02

In Oracle9i, the same tasks would require 35 minutes and 18 seconds:

- External Table/direct Upsert 02:27
- Variable Length Aggregates 04:25
- Create Materialized View (mav12) 23:04
- Create Materialized View (mav30) 03:50
- Fast Refresh 00:42 (sum of times for 2 test cases)
- PL/SQL 00:48 (second test case)
- Index Skip Scan 00:02
- Join (with bitmap join index) 00:07

Figure 9: Performance enhancement of Oracle9 i for all test results

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Ext. Tables Upsert Group By Mav12 Mav30 Fast
Refresh

PL/SQL Index SS BM Join

%
 Im

p
ro

ve
m

en
t

in
 O

ra
cl

e9
i

Data Warehouse Performance Enhancements with Oracle9i Page 17

We are confident that the performance benefits of Oracle9 i over Oracle8i will be similar or even
better for larger scale data warehouses than with the 30GB database we used in this study. For long-
running operations such as materialized view creation, the performance enhancements translate to
very significant time savings for very large data warehouses - likely hours of time saved for every
cycle of a large data warehouse. With the major time savings on long-running operations, windows
for refresh processing can be reduced, enhancing data availability for users. In addition, data can be
refreshed more frequently, enhancing data currency for better business decision making. Very large
data warehouses will also benefit from the disk savings enabled by bitmap join indexes and index
skip scan.

Oracle has long been the leading database for data warehouses. The dozens of data warehousing
enhancements added to Oracle starting with Oracle 7.3 have created a rich and robust feature set for
decision support tasks. The important performance enhancements of Oracle9 i extend Oracle’s
leadership, making Oracle an even stronger platform for data warehousing.

Data Warehouse Performance Enhancements with Oracle9i Page 18

APPENDIX

Initialization Files

init8iopt.ora

**
db_file_multiblock_read_count = 64
audit_trail = FALSE
compatible = 8.1.7
control_files = ("/private5/mbender/dbs/control8iopt1.ora",
 "/private5/mbender/dbs/control8iopt2.ora")
db_block_buffers = 20000
db_block_size = 8192
db_files = 1023
db_file_multiblock_read_count = 64
db_name = 8iopt
distributed_transactions = 20
dml_locks = 100000
enqueue_resources = 50000
hash_area_size = 10000000
job_queue_processes = 2
large_pool_size = 200000000
log_buffer = 8388608
max_dump_file_size = 500000
max_rollback_segments = 650
nls_date_format = YYYY-MM-DD
open_cursors = 1024
optimizer_index_cost_adj = 20
parallel_broadcast_enabled = true
parallel_execution_message_size = 8192
parallel_max_servers = 200
partition_view_enabled = true
processes = 400
query_rewrite_enabled = true
query_rewrite_integrity = trusted
sessions = 400
shared_pool_size = 200000000
sort_area_size = 10000000
transactions = 512
transactions_per_rollback_segment = 20
user_dump_dest = "/private5/mbender/udump8i"

**

Data Warehouse Performance Enhancements with Oracle9i Page 19

init9iopt.ora

**
audit_trail = FALSE
compatible = 8.2.0
control_files = ("/private5/mbender/dbs/control9iopt1.ora",
 "/private5/mbender/dbs/control9iopt2.ora")
db_block_buffers = 20000
db_block_size = 8192
db_files = 1023
_disable_multiple_block_sizes=true
db_file_multiblock_read_count = 64
db_name = 9iopt
distributed_transactions = 20
dml_locks = 100000
enqueue_resources = 50000
hash_area_size = 10000000
 # hash_area_size : needed only for comparison to 8i
 # (Group By tests), with Oracle9i Dynamic Memory
 # Management, the setting is not necessary
large_pool_size = 200000000
log_buffer = 8388608
max_dump_file_size = 500000
max_rollback_segments = 650
nls_date_format = YYYY-MM-DD
open_cursors = 1024
optimizer_index_cost_adj = 20
parallel_broadcast_enabled = true
parallel_execution_message_size = 8192
parallel_max_servers = 200
partition_view_enabled =true
pga_aggregate_target = 4g
processes = 400
query_rewrite_enabled = true
query_rewrite_integrity = trusted
sessions = 400
shared_pool_size = 200000000
sort_area_size = 10000000
 # sort_area_size : needed only for comparison to 8i
 # (Group By tests), with Oracle9i Dynamic Memory
 # Management, the setting is not necessary
transactions = 512
transactions_per_rollback_segment = 20
user_dump_dest = "/private5/mbender/udump9i"

**

Data Warehouse Performance Enhancements with Oracle9i Page 20

Creation Statements

merge / upsert

**
Rem upsert9i.sql
Rem
Rem NAME
Rem upsert9i.sql
Rem
Rem DESCRIPTION
Rem Modifies the table customer using the new 9i MERGE-statement
Rem Destination table: CUSTOMER : 4.5 M. Rows
Rem Source table: CUSTOMER_MERGE : 3 M. Rows
Rem 1.5 M. New Entries (Insert) 1.5 / 1.5 M. existing (Update)
Rem Parallel Degree: 16
Rem
Rem MODIFIED (MM/DD/YY)
Rem batzenbe 03/24/01 - Created
Rem

alter session enable parallel dml;

MERGE /*+ PARALLEL(O,16) */ INTO CUSTOMER O
USING CUSTOMER_MERGE N
ON (O.C_CUSTKEY=N.C_CUSTKEY)
WHEN MATCHED THEN
UPDATE SET
 O.C_COMMENT = N.C_COMMENT
,O.C_NAME = N.C_NAME
,O.C_ADDRESS = N.C_ADDRESS
,O.C_PHONE = N.C_PHONE
WHEN NOT MATCHED THEN
INSERT
(C_CUSTKEY
,C_MKTSEGMENT
,C_NATIONKEY
,C_NAME
,C_ADDRESS
,C_PHONE
,C_ACCTBAL
,C_COMMENT)
VALUES
(N.C_CUSTKEY
,N.C_MKTSEGMENT
,N.C_NATIONKEY
,N.C_NAME
,N.C_ADDRESS
,N.C_PHONE
,N.C_ACCTBAL
,N.C_COMMENT);

commit;

**

Data Warehouse Performance Enhancements with Oracle9i Page 21

**
Rem upsert8i.sql
Rem
Rem NAME
Rem upsert8i.sql
Rem
Rem DESCRIPTION
Rem Modifies the table customer using 8i UPDATE/INSERT-statements
Rem Destination table: CUSTOMER : 4.5 M. Rows
Rem Source table: CUSTOMER_MERGE : 3 M. Rows
Rem 1.5 M. New Entries (Insert) 1.5 / 1.5 M. existing (Update)
Rem Parallel Degree: 16
Rem
Rem MODIFIED (MM/DD/YY)
Rem batzenbe 03/24/01 - Created
Rem

alter session enable parallel dml;

UPDATE /*+ PARALLEL(N,16) */
(
SELECT /*+ PARALLEL(N,16) PARALLEL(O,16) */
 O.C_COMMENT AS OLD_C_COMMENT
 ,N.C_COMMENT AS NEW_C_COMMENT
 ,O.C_NAME AS OLD_C_NAME
 ,N.C_NAME AS NEW_C_NAME
 ,O.C_ADDRESS AS OLD_C_ADDRESS
 ,N.C_ADDRESS AS NEW_C_ADDRESS
 ,O.C_PHONE AS OLD_C_PHONE
 ,N.C_PHONE AS NEW_C_PHONE
FROM CUSTOMER_MERGE N
 ,CUSTOMER O
WHERE O.C_CUSTKEY=N.C_CUSTKEY
)
SET
 OLD_C_COMMENT = NEW_C_COMMENT
 ,OLD_C_NAME = NEW_C_NAME
 ,OLD_C_ADDRESS = NEW_C_ADDRESS
 ,OLD_C_PHONE = NEW_C_PHONE;

INSERT /*+ PARALLEL(CUSTOMER,16) */ INTO CUSTOMER
SELECT /*+ PARALLEL(N,16) */ * FROM CUSTOMER_MERGE N
WHERE NOT EXISTS
(SELECT ’’ FROM CUSTOMER O
WHERE N.C_CUSTKEY=O.C_CUSTKEY);

commit;

**

Data Warehouse Performance Enhancements with Oracle9i Page 22

external tables

**
Rem upsert_external.sql
Rem
Rem NAME
Rem upsert_external.sql
Rem
Rem DESCRIPTION
Rem Modifies the table customer using the new 9i MERGE- and External Table feature
Rem Destination table: CUSTOMER : 4.5 M. Rows
Rem Source table: CUSTOMER_EXTERNAL: 3 M. Rows (External Table)
Rem 1.5 M. New Entries (Insert) 1.5 / 1.5 M. existing (Update)
Rem Parallel Degree: 16
Rem
Rem Consists of two steps:
Rem 1.) Creating External Table
Rem 2.) Merge using External Table directly
Rem MODIFIED (MM/DD/YY)
Rem batzenbe 03/27/01 - Created
Rem

DROP DIRECTORY CUSTOMER_DIR ;
CREATE DIRECTORY CUSTOMER_DIR AS ’/private/test/ext_load_dat’ ;

DROP TABLE CUSTOMER_EXTERNAL;

CREATE TABLE CUSTOMER_EXTERNAL
(
 C_CUSTKEY NUMBER,
 C_MKTSEGMENT CHAR(10),
 C_NATIONKEY NUMBER,
 C_NAME VARCHAR2(25),
 C_ADDRESS VARCHAR2(40),
 C_PHONE CHAR(15),
 C_ACCTBAL NUMBER,
 C_COMMENT VARCHAR2(117)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY CUSTOMER_DIR
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 BADFILE ’CUSTOMER_DIR’:’cust_external.bad’
 LOGFILE ’CUSTOMER_DIR’:’cust_external.log’
 FIELDS LDRTRIM

(C_CUSTKEY POSITION (1:10) CHAR (10)
,C_MKTSEGMENT POSITION (11:20) CHAR (10)
,C_NATIONKEY POSITION (21:23) CHAR (3)
,C_NAME POSITION (24:41) CHAR (18)
,C_ADDRESS POSITION (42:81) CHAR (40)
,C_PHONE POSITION (82:96) CHAR (15)
,C_ACCTBAL POSITION (97:104) CHAR (8)
,C_COMMENT POSITION (105:134) CHAR(30))

)
 location

Data Warehouse Performance Enhancements with Oracle9i Page 23

 (
’TPCD.CUST_MERGE_VAR_PAR_SYS_P8653.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8654.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8655.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8656.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8657.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8658.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8659.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8660.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8661.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8662.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8663.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8664.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8665.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8666.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8667.DAT’
,’TPCD.CUST_MERGE_VAR_PAR_SYS_P8668.DAT’
)
)REJECT LIMIT UNLIMITED;

alter session enable parallel dml;

MERGE /*+ PARALLEL(O,16) */ INTO CUSTOMER O
USING CUSTOMER_EXTERNAL N
ON (O.C_CUSTKEY=N.C_CUSTKEY)
WHEN MATCHED THEN
UPDATE SET
 O.C_COMMENT = N.C_COMMENT
,O.C_NAME = N.C_NAME
,O.C_ADDRESS = N.C_ADDRESS
,O.C_PHONE = N.C_PHONE
WHEN NOT MATCHED THEN
INSERT
(C_CUSTKEY
,C_MKTSEGMENT
,C_NATIONKEY
,C_NAME
,C_ADDRESS
,C_PHONE
,C_ACCTBAL
,C_COMMENT)
VALUES
(N.C_CUSTKEY
,N.C_MKTSEGMENT
,N.C_NATIONKEY
,N.C_NAME
,N.C_ADDRESS
,N.C_PHONE
,N.C_ACCTBAL
,N.C_COMMENT);

commit;

**

Data Warehouse Performance Enhancements with Oracle9i Page 24

group by

**
Rem GroupBy.sql
Rem
Rem NAME
Rem GroupBy.sql
Rem
Rem DESCRIPTION
Rem This query joins lineitem and parts with a large number of
Rem GROUP BY records as output.
Rem
Rem MODIFIED (MM/DD/YY)
Rem mbender 03/07/01 - Created
Rem

alter session set sort_area_size = 20000000;
alter table lineitem parallel 24;
alter table parts parallel 24;

select count(*) from
(
select
 p_brand
 ,p_container
 ,p_size
 ,l_shipmode
 ,l_shipinstruct
 ,p_name
 ,sum(l_quantity) as sum_qty
 ,sum(l_extendedprice) as sum_base_price
 ,variance(l_extendedprice) as var_base_price
 ,sum(l_extendedprice * (1 - l_discount)) as sum_disc_price
 ,variance(l_extendedprice * (1 - l_discount)) as var_disc_price
 ,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge
 ,variance(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as var_charge
 ,avg(l_quantity) as avg_qty
 ,avg(l_extendedprice) as avg_price
 ,avg(l_discount) as avg_disc
 ,avg(l_extendedprice * (1 - l_discount)) as avg_disc_price
 ,avg(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as avg_charge
 ,count(*) as count#
from
 lineitem,
 parts
where
 p_partkey = l_partkey
 and p_container in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)
 and l_shipdate between to_date(’1995-01-01’, ’YYYY-MM-DD’)
 and to_date(’1997-06-28’, ’YYYY-MM-DD’)
group by p_name
 ,p_brand
 ,p_container
 ,p_size
 ,l_shipmode
 ,l_shipinstruct);

Data Warehouse Performance Enhancements with Oracle9i Page 25

**

materialized views

**
Rem mav10.sql
Rem
Rem NAME
Rem mav10.sql
Rem
Rem DESCRIPTION
Rem This create statement creates an aggregated Materialized View
Rem an index on the GROUP BY keys is not created automatically
Rem
Rem MODIFIED (MM/DD/YY)
Rem mbender 03/07/01 - Created
Rem

create materialized view mav10
pctfree 1
pctused 99
initrans 10
tablespace ts_ind
storage (initial 1m next 1m freelists 12 freelist groups 2 maxextents unlimited pctincrease 0)
parallel (degree 12)
nologging
using no index
enable query rewrite
as

-- statement continues

Data Warehouse Performance Enhancements with Oracle9i Page 26

select
 p_brand
 ,p_size
 ,p_container
 ,l_shipmode
 ,l_shipinstruct
 ,l_quantity
 ,l_shipdate
 ,count(l_quantity) as countqty
 ,count(l_discount) as countdisc
 ,count(l_extendedprice) as count_price
 ,count(l_extendedprice * (1 - l_discount)) as cou_disc_price
 ,count(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as cou_charge
 ,sum(l_quantity) as sumqty
 ,sum(l_discount) as sumdisc
 ,sum(l_extendedprice) as sum_base_price
 ,sum(l_extendedprice * (1 - l_discount)) as revenue
 ,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge
 ,variance(l_extendedprice) as var_base_price
 ,variance(l_extendedprice * (1 - l_discount)) as var_disc_price
 ,variance(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as var_charge
 ,avg(l_quantity) as avg_qty
 ,avg(l_discount) as avg_disc
 ,avg(l_extendedprice) as avg_price
 ,avg(l_extendedprice * (1 - l_discount)) as avg_disc_price
 ,avg(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as avg_charge
from
 lineitem,
 parts
where
 p_partkey = l_partkey
 and p_container in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’)
 and l_shipdate between to_date(’1995-01-01’, ’YYYY-MM-DD’)
 and to_date(’1995-12-26’, ’YYYY-MM-DD’)
group by
 p_brand
 ,p_size
 ,p_container
 ,l_shipmode
 ,l_shipinstruct
 ,l_quantity
 ,l_shipdate;

**

Data Warehouse Performance Enhancements with Oracle9i Page 27

**
Rem mav12.sql
Rem
Rem NAME
Rem mav12.sql
Rem
Rem DESCRIPTION
Rem This statement creates an Aggregated Materialized View,
Rem an index on the GROUP BY keys is not created automatically
Rem since no predicates on lineitem or parts are provided. A lot of
Rem hash and sort information has to be written down to temp
Rem
Rem MODIFIED (MM/DD/YY)
Rem mbender 03/07/01 - Created
Rem

create materialized view mav12
pctfree 1
pctused 99
initrans 10
tablespace ts_ind
storage (initial 1m next 1m freelists 12 freelist groups 2 maxextents unlimited pctincrease 0)
parallel (degree 12)
nologging
using no index
enable query rewrite
as
select
 p_brand
 ,p_container
 ,l_shipdate
 ,count(*) cnt
 ,count(l_quantity) as countqty
 ,count(l_discount) as countdisc
 ,count(l_extendedprice) as count_price
 ,count(l_extendedprice * (1 - l_discount)) as cou_disc_price
 ,count(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as cou_charge
 ,sum(l_quantity) as sumqty
 ,sum(l_discount) as sumdisc
 ,sum(l_extendedprice) as sum_base_price
 ,sum(l_extendedprice * (1 - l_discount)) as revenue
 ,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge
 ,avg(l_extendedprice * (1 - l_discount)) as avg_disc_price
from
 lineitem,
 parts
where
 p_partkey = l_partkey
group by
 p_brand
 ,p_container
 ,l_shipdate;

**

Data Warehouse Performance Enhancements with Oracle9i Page 28

**
Rem mav30.sql
Rem
Rem NAME
Rem mav30.sql
Rem
Rem DESCRIPTION
Rem This is an aggregated materialized view on the table orders
Rem
Rem MODIFIED (MM/DD/YY)
Rem batzenbe 03/22/01 - Created
Rem

create materialized view mav30
pctfree 1
initrans 10
tablespace ts_ind
storage (initial 1m next 1m freelists 12 freelist groups 2 maxextents unlimited pctincrease 0)
parallel (degree 12)
nologging
enable query rewrite
as
select
 o_custkey
 ,count(*) as count_ord_rev_cust
 ,sum(o_totalprice) as sum_ord_rev_cust
 ,max(o_totalprice) as max_ord_rev_cust
 ,min(o_totalprice) as min_ord_rev_cust
 ,avg(o_totalprice) as avg_ord_rev_cust
 ,variance(o_totalprice) as var_ord_rev_cust
 ,max(o_orderdate) as max_order_date
 ,min(o_orderdate) as min_order_date
from
 orders
group by
 o_custkey;

**

Data Warehouse Performance Enhancements with Oracle9i Page 29

**
Rem mav40.sql
Rem
Rem NAME
Rem mav30.sql
Rem
Rem DESCRIPTION
Rem This is an aggregated materialized view on the table lineitem
Rem
Rem MODIFIED (MM/DD/YY)
Rem mbender 03/22/01 - Created
Rem

create materialized view ma_lineitem
pctfree 2
tablespace ts_default
parallel
nologging
REFRESH fast
ON demand
enable query rewrite
as select
count(*) as count_p_group,
 l_shipdate,

l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
count(l_extendedprice * (1 - l_discount)) as count_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
count(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as count_charge,
count(l_quantity) as count_qty,
count(l_extendedprice) as count_price,
sum(l_discount) as sum_disc,
count(l_discount) as count_disc,
count(*) as count_order

FROM
 lineitem
GROUP BY
 l_returnflag ,
 l_linestatus ,
 l_shipdate ;

**

Data Warehouse Performance Enhancements with Oracle9i Page 30

fast refresh

**
Rem Fast Refresh (mav12.sql)
Rem
Rem DESCRIPTION
Rem Fast Refresh test
Rem 1. create the snapshot logs
Rem 2. create the materialized view (mav12)
Rem
Rem MODIFIED (MM/DD/YY)
Rem mbender 03/22/01 - Created
Rem

create materialized view log on lineitem
tablespace ts_ind
parallel
with rowid
(
 l_shipdate
 ,l_quantity
 ,l_discount
 ,l_extendedprice
 ,l_tax
 ,l_partkey
)
including new values;

create materialized view log on parts
tablespace ts_ind
parallel
with rowid
(p_partkey
 ,p_brand
 ,p_container
)
including new values;

Rem
Rem create the materialized view mav12 (see mav12.sql)
Rem snapshot logs must be there before creating the mav
Rem

Rem
Rem in Oracle8i only insert append is supported
Rem
alter session enable parallel dml;
insert into orders select * from temp_o /* 1 Row */;
insert into lineitem select * from temp_l /* 2 Rows */;
commit;

Rem for Oracle8i
execute dbms_snapshot.refresh(’MAV12’,’F’,atomic_refresh=>false);

Rem for Oracle9i
execute dbms_snapshot.refresh(’MAV12’,’F’);

Data Warehouse Performance Enhancements with Oracle9i Page 31

**

Data Warehouse Performance Enhancements with Oracle9i Page 32

**
Rem Fast Refresh (mav40.sql)
Rem
Rem DESCRIPTION
Rem Fast Refresh test
Rem 1. create the snapshot logs
Rem 2. create the materialized view (mav40)
Rem
Rem MODIFIED (MM/DD/YY)
Rem mbender 03/22/01 - Created
Rem

create materialized view log on lineitem
tablespace ts_ind
parallel
partition by range (l_shipdate)
(
,partition item1 values less than (to_date(’1992-01-01’,’YYYY-MM-DD’))
,partition item2 values less than (to_date(’1992-02-01’,’YYYY-MM-DD’))
,partition item3 values less than (to_date(’1992-03-01’,’YYYY-MM-DD’))

…

,partition item82 values less than (to_date(’1998-10-01’,’YYYY-MM-DD’))
,partition item83 values less than (to_date(’1998-11-01’,’YYYY-MM-DD’))
,partition item84 values less than (MAXVALUE)
)
with rowid
(
 l_shipdate ,
 l_returnflag ,
 l_linestatus ,
 l_quantity ,
 l_extendedprice ,
 l_discount ,
 l_tax ,
 l_suppkey ,
 l_partkey ,
 l_orderkey
)
including new values
;

Rem
Rem create the materialized view mav40 (see mav40.sql)
Rem snapshot logs must be there before creating the mav
Rem

alter session enable parallel dml;
insert into lineitem select * from temp_item_3 /* 179,000 Rows */;
commit;

execute dbms_snapshot.refresh(’MA40’);

Data Warehouse Performance Enhancements with Oracle9i Page 33

pl/sql

Rem function.sql
Rem
Rem NAME
Rem function.sql
Rem
Rem DESCRIPTION
Rem This script consists of two steps:
Rem 1.) Creating the function total_price
Rem 2.) Test SQL applying total_price to table orders
Rem
Rem
Rem Prerequisite: Index on column l_orderkey
Rem Subselect determines how many rows are retrieved
Rem In this version: 400,000
Rem
Rem MODIFIED (MM/DD/YY)
Rem batzenbe 03/22/01 - Created
Rem

CREATE OR REPLACE FUNCTION
 total_price
 (
 ex_price in number
 ,discount in number
)

RETURN NUMBER DETERMINISTIC PARALLEL_ENABLE
 IS discount_price NUMBER(30,2);

BEGIN
discount_price:=ex_price*(1-discount);
RETURN (discount_price);
END;

select
 round(max(total_price(l_extendedprice,l_discount)),2) as max_total_price
 ,round(min(total_price(l_extendedprice,l_discount)),2) as min_total_price
 ,round(avg(total_price(l_extendedprice,l_discount)),2) as avg_total_price
from lineitem l
where l_orderkey > (
 select max(l_orderkey)-400000
 from lineitem
);

Data Warehouse Performance Enhancements with Oracle9i Page 34

index skip scan

**
Rem index_skip.sql
Rem
Rem NAME
Rem index_skip.sql
Rem
Rem DESCRIPTION
Rem This script consists of two steps:
Rem 1.) Create index I_ORDERS_SKIP
Rem 2.) Querying the table
Rem
Rem Query filters 0,.14% of rows
Rem By default the optimizer chooses Bitmap Join Index in 9i and index fast full scan in 8i
Rem MODIFIED (MM/DD/YY)
Rem batzenbe 03/23/01 - Created
Rem

create index I_orders_skip
on orders
(
 o_orderpriority
 , o_orderstatus
 , o_totalprice
)
nologging
parallel(degree 24)
storage (initial 10M next 10M pctincrease 0)
compute statistics
tablespace ts_ps;

select
 o_orderpriority
 ,o_orderstatus
 ,sum(o_totalprice)
from
 orders
where
 o_orderstatus=’F’
and
 o_totalprice between 0 and 2000
group by
 o_orderpriority
 ,o_orderstatus;

**

Data Warehouse Performance Enhancements with Oracle9i Page 35

bitmap join index

**
Rem bitmap_join.sql
Rem
Rem NAME
Rem bitmap_join.sql
Rem
Rem DESCRIPTION
Rem This script consists of two steps:
Rem 1.) Create index I_PARTSUP_BMJ (only Oracle9i)
Rem 2.) Querying the table
Rem
Rem
Rem By default optimizer chooses Bitmap Join Index access in 9i and hash join in 8i
Rem MODIFIED (MM/DD/YY)
Rem batzenbe 03/29/01 - Created
Rem

create bitmap index i_partsup_bmj
on partsupp(p.p_type,s.s_nationkey)
from partsupp ps,parts p,supplier s
where ps.ps_partkey=p.p_partkey
and ps.ps_suppkey=s.s_suppkey
local
nologging
parallel (degree 16)
storage (initial 1m next 1m pctincrease 0)
compute statistics;

select
count(distinct ps_suppkey)
,avg(ps_supplycost)
,max(ps_supplycost)
,min(ps_supplycost)
from partsupp ps,supplier s,parts p
where ps.ps_suppkey=s.s_suppkey
and ps.ps_partkey=p.p_partkey
and s.s_nationkey=24
and p.p_type=’medium burnished steel’;

**

DWH Performance Enhancements with Oracle9i

April 2001

Author: Bernhard Atzenberger, Marcus Bender

Contributing Authors: Cetin Ozbutun, Hakan Jakobsson, Benoit Dageville, Alexandra Karasik, Angela Amor, Herrmann Baer, Neil Thombre

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

www.oracle.com

Oracle Corporation provides the software

that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various

product and service names referenced herein may be trademarks

of Oracle Corporation. All other product and service names

mentioned may be trademarks of their respective owners.

Copyright © 2001 Oracle Corporation

All rights reserved.

